Advertisement

Więcej nie znaczy lepiej 

Sztuczna inteligencja staje się wszechobecna. Jej początku nie wyznacza pojawienie się modelu ChatGPT, ale to wraz z jego premierą w listopadzie ubiegłego roku SI zyskała ogromną popularność. W świecie IT nie widzieliśmy takiej euforii i szybkości adaptacji od czasu pojawienia się technologii blockchain. Według tegorocznego raportu IDC do 2026 roku wydatki na sztuczną inteligencję na świecie wyniosą ponad 301 mld dolarów, czyli dwukrotnie więcej niż obecnie.

Jan Wildeboer,

Open Source Evangelist na region EMEA, Red Hat

Obiecuje się, że sztuczna inteligencja przyczyni się do poprawy wydajności pracowników, zwiększenia zadowolenia klientów oraz minimalizacji ryzyka biznesowego. Pod wpływem tej euforii wielu pracowników skłania się do eksperymentów z narzędziami SI i dąży do bycia pionierem w tej dziedzinie. Jednak chcąc wykorzystać nowe sposoby budowania przewagi konkurencyjnej, nieświadomie narażają swoje organizacje na ryzyko.

Co z kontrolą nad danymi?

Popularna jest narracja, według której dane są cennym zasobem, więc zwiększanie ich ilości przyczynia się do wzrostu ich wartości. Nie zawsze jest to prawda. Im więcej używanych jest różnych zbiorów danych, tym trudniej zapewnić ich wiarygodność i dokładność. Dodatkowo istnieje ryzyko naruszeń praw autorskich, do których sztuczna inteligencja może przypadkowo doprowadzić.

Warto zwrócić uwagę na przykład SI, która obecnie jest bardzo popularna – ChatGPT. Na stronie firmy OpenAI widnieje zastrzeżenie, że program „może generować niedokładne informacje”. Istnieje wiele dowodów potwierdzających tę tezę. Może nie stanowić to większego problemu, jeśli potrzebujemy tylko przepisu na biszkopt, ale staje się poważnym zagrożeniem, jeśli wykorzystujemy go np. do badania orzecznictwa.

Przenieśmy to ryzyko do środowiska biznesowego. Narzędzie SI automatycznie zarządza poziomami zasobów; konfiguruje wynagrodzenia na podstawie wydajności; prognozuje kwartalne przepływy pieniężne; optymalizuje transakcje walutowe i inne, podejmuje fundamentalne decyzje, które mają ogromny wpływ na rentowność biznesu. Wszystko to można skutecznie kontrolować dzięki dojrzałej strategii zarządzania danymi i SI. Problem pojawia się, gdy pracownicy zaczynają korzystać z nieautoryzowanych i niezweryfikowanych narzędzi wykorzystujących sztuczną inteligencję. Uniemożliwia to kontrolę.

Wyzwanie jest więc dwojakie – jak zagwarantować integralność znanych i stosowanych narzędzi SI oraz jak powstrzymać pracowników przed używaniem niezweryfikowanych narzędzi w swojej pracy?

Odpowiedź jest bardziej ogólna niż konkretna. Przyszłość sztucznej inteligencji nie leży w dużych modelach językowych, które obecnie dominują w medialnych nagłówkach, ani w innych ogólnych rozwiązaniach, które będą służyć wielu użytkownikom. Przedsiębiorstwa będą potrzebowały rozwiązań, które są specyficzne dla ich branży, klientów i zadań.

Lepsze i bardziej trafne dane

Nowa era „specjalistycznej sztucznej inteligencji” będzie charakteryzowała się możliwością tworzenia unikalnych i zróżnicowanych usług. Wymaga to, aby modele bazowe były szkolone na danych prywatnych i dostosowywane do standardów oraz praktyk danej firmy lub branży. Gdy takie modele są zasilane dobrze zorganizowanymi, skoncentrowanymi i zweryfikowanymi danymi, oferują możliwości, które sprawiają, że współpraca z nimi daje wrażenie pracy z ekspertem. Można im zaufać, ponieważ wiadomo, że nie zostały stworzone na podstawie losowych zbiorów danych zebranych z różnych źródeł. Decyzje, które generuje SI są bardziej trafne i skuteczne. W rezultacie pracownicy nie będą potrzebowali szukać własnych, niezweryfikowanych rozwiązań. Dodatkowo, jeśli zostaną zaangażowani w proces tworzenia rozwiązań sztucznej inteligencji, poczują większe zaangażowanie i lojalność wobec firmy.

Ci, którzy są naprawdę „wtajemniczeni” wiedzą, że właśnie w dziedzinie sztucznej inteligencji zachodzą najciekawsze innowacje. Opracowywane są zestawy narzędzi do SI specyficznej dla danej branży. Już wydają się one mieć większy potencjał od dużych graczy w dziedzinie sztucznej inteligencji. Zgodnie z powiedzeniem – więcej nie zawsze znaczy lepiej.

Ważne, by tworzeniu narzędzi towarzyszyła przejrzystość i wiarygodność. Dlatego rozwijanie sztucznej inteligencji jest zadaniem zespołów odpowiedzialnych za prawo i zgodność z przepisami. Ich współpraca z analitykami danych i specjalistami z dziedziny DevOps będzie kluczowym elementem skutecznej strategii SI.

Konieczne jest tworzenie i egzekwowanie wytycznych dotyczących tego, jak i kiedy używać SI, a także stawianie pytań o pochodzenie danych, które prawdopodobnie będą zadawane również przez organy regulacyjne. Na całym świecie rośnie zaangażowanie organów jurysdykcji w te kwestie, co potwierdza przykład AI Act Unii Europejskiej, AI Bill of Rights w USA, brytyjski AI Regulation Policy Paper czy przepisy ChRL dotyczące zarządzania algorytmicznymi rekomendacjami. Ignorancja była słabą obroną, nawet gdy można było zrzucić odpowiedzialność na dostawcę. Nie będzie to jednak możliwe, gdy modele sztucznej inteligencji zostaną stworzone na podstawie własnych danych.

Najnowsze

Nie ma gospodarek bez problemów

Z prof. Grzegorzem Kołodko z Akademii Leona Koźmińskiego, czterokrotnym wicepremierem i ministrem finansów w czterech rządach, rozmawiał prof. Paweł Wojciechowski, Chair of...

Umiejętna i świadoma komunikacja

W szybko zmieniającym się sektorze finansowym każdy kolejny rok przynosi coraz to nowsze wyzwania, które redefiniują rolę lidera. Środowisko...

PERSONALIA

Piotr Żabski w Zarządzie Alior Banku Z początkiem listopada do zarządu Alior Banku dołączył Piotr Żabski i objął stanowisko wiceprezesa kierującego pracami...

Panoramy NIERUCHOMOŚCI

Stabilna jesień u deweloperów Październik był dla deweloperów działających na siedmiu najważniejszych rynkach nieco lepszy od września – wskazuje wstępny odczyt...

Panorama INWESTYCJE

Nowa perspektywa finansowa Polityka spójności – jak co siedem lat – wymaga zmian, ale nie rewolucji – podkreśla Jan Szyszko, wiceminister...